
PHYSICAL REVIEW E 68, 016406 ~2003!
Resonant quasiparticles in plasma turbulence
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A general view is proposed on wave propagation in fluids and plasmas where the resonant interaction of
monochromatic waves with quasiparticles is considered. A kinetic equation for quasiparticles is used to de-
scribe the broadband turbulence interacting with monochromatic waves. Resonant interactions occur when the
phase velocity of the long wavelength monochromatic wave is nearly equal to the group velocity of short
wavelength wave packets, or quasiparticles, associated with the turbulent spectrum. It is shown that quasipar-
ticle Landau damping can take place, as well as quasiparticle beam instabilities, thus establishing a direct link
between short and large wavelength perturbations of the medium. This link is distinct from the usual picture of
direct and inverse energy cascades, and it can be used as a different paradigm for the fluid and plasma
turbulence theories.
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I. INTRODUCTION

Plasmas and fluids are usually in a turbulent state. On
the main physical problems is then to understand how mo
chromatic waves or large scale structures can deve
propagate, or be damped by the turbulence. Here, we
pose a global approach where the broadband turbulenc
described as a gas of quasiparticles. Such an approa
valid as long as we can identify two space and time sc
ranges; a short one associated with the internal oscillation
these quasiparticles and a long one associated with the
vidual monochromatic waves or large scale structures.

In such a picture of plasma and fluid turbulence, the m
physical processes are those leading to a direct coupling
tween large scale structures~the wave! and short scale struc
tures of the medium~the turbulence!. This coupling can lead
to an energy exchange in opposite directions. The ene
transfer from turbulence to large scale structures can be
to kinetic and hydrodynamic instabilities of the quasiparti
gas. This has been improperly described as an inverse
cading process, but it consists on a single step process
not really a cascade.

The opposite case of an energy transfer to the short s
turbulence is due to wave damping, associated with the r
nant interaction between a long wavelength wave and
quasiparticles. It extends the concept of a noncollisional L
dau damping from the real particles~electrons and ions, in
the original concept! to the quasiparticle distributions.

The universality of the resonant processes should
stressed here. Several particular examples can alread
found in the literature, and illustrate such universality:

~i! Electron plasma waves propagating in a photon
@1#; this is relevant to laser-plasma interactions and to as
physics.

~ii ! Ion acoustic waves in a plasmon gas, where the p
mons describe the broadband electron plasma wave tu
lence@2,3#; this process can be seen as of an academic in
est, which, however, provides a useful basis for differ
experimental plasma studies.

~iii ! Dust lattice waves in a turbulent plasma sheath@4#;
1063-651X/2003/68~1!/016406~6!/$20.00 68 0164
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these waves can become parametrically unstable due to
turbulent fluctuations of the plasma sheath where d
plasma crystals are formed, and can eventually lead to m
ing and sublimation of the crystalline structure. The bac
ground quasiparticles here are plasma phonons.

~iv! Zonal flows in which one could call a drifton ga
@5–7# ~which describes a large spectrum of drift wave turb
lence!; this is a relevant process for anomalous transpor
magnetic fusion plasmas. Similar processes can also
found in fluid dynamics, involving zonal flows and Rossb
waves in the oceans or in the atmosphere of the planets@8#.

But the universality of the physical picture described he
is not exhausted by these examples, and a much larger n
ber of relevant examples can be added. As an extreme
ample, we could consider the excitation of gravitation
waves by a photon gas@9#, where the fluid is replaced by th
vacuum metric field and the photons can be considered
quasiparticles in the sense of short scale electromagn
wave packets.

II. DISPERSION RELATION

The general form of the dispersion relation of electrosta
waves in a turbulent plasma can be written as

e~v,kW !52xqp, ~1!

wherexqp is the quasiparticle susceptibility, if the turbule
state is described as a quasiparticle gas, ande(v,kW ) is the
dielectric function for a mode with frequencyv and wave
vector kW . Usually, we can also writee(v,kW )511Saxa ,
where the sum is over the different charged particle spe
present in the plasma. It is important to note thatxqp contains
both resonant and nonresonant quasiparticle contributi
and that the resonant part plays an important role in the
ergy balance of the plasma, as discussed below.

This kind of dispersion relation can be established
starting with an equation of the propagation for the poten
f ~or, in alternative, for the density perturbationñ) of the
form
©2003 The American Physical Society06-1
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L„rW,t,N~kW8!…f50, ~2!

whereL is a space-time differential operator, which depen
on the quasiparticle number densityN(kW8), and kW8 is the
quasiparticle momentum. Note that this is a nonlinear disp
sion relation, whereN(kW8) is also related to the potentialf.

By imposing a perturbation of the form expi(kW•rW2vt) on
both f and the perturbed distributionÑ(kW8), we obtain

e~v,kW !f5E g~kW ,kW8!Ñ~kW8!dkW8. ~3!

Obviously,e(v,kW )50 will be the dispersion relation of th
slow wave, in the absence of turbulence. But, in general,
need to establish a relation betweenÑ(kW8) with f, in order
to derive the dispersion relation~1!. This is done by using an
evolution equation for the turbulence field in the form of
kinetic wave equation for the quasiparticle distribution.

III. KINETIC EQUATION

Before stating the kinetic wave equation, we need to id
tify an invariant quantityN, valid for a slowly perturbed
turbulent state, in the form of an integral over the six
dimensional~position and momentum! phase space (rW,kW8):

N5E N~kW8,rW,t !drWdkW8. ~4!

In most situations, the quantity appearing inside the integ
is nothing but the energy density divided by the frequen
and takes the obvious physical meaning of a quasipar
number density or wave actionN(kW8,rW,t)5W(kW8,rW,t)/\v8,
where we can take\51, and wherev8 is the energy of the
quasiparticles with momentumkW8. We can thus identify this
frequency with the functionv85v8(kW8), as determined by
the linear dispersion relation of the short wavelength tur
lence modes. This is valid for the electromagnetic turbule
~where the photons in a plasma can be seen as an ext
example of quasiparticles and more appropriately descr
as dressed particles in the usual sense of the field theory!, as
well as for the electrostatic turbulence of the electron plas
or the ion acoustic types~plasmons and phonons!. This is
also valid in the case of the pseudo-three-dimensional d
wave turbulence, which can be called a drifton gas, as
scribed by a modified Hasegawa-Mima equation@6,7#.

It should be noticed that, in the present approach,
quasiparticle number densityN(kW8,rW,t) is not a function of
the frequency~or energy! v8, and only of the wave vecto
~or momentum! kW8. Of course, we could have used a fr
quency dependent distributionN(kW8,v8;rW,t), as it can also
be found in the literature@11#. If the frequency is uniquely
determined by a given dispersion relation, we can sim
write N(kW8,rW,t)52pN(kW8,v8;rW,t)d„v82v8(kW8)….

A consistent definition of the quasiparticle number de
sity, where the relation between these two possible de
tions is clarified, can be given in terms of the Wigner fun
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tion for the electrostatic or the electromagnetic field@10,12#.
Once identified the quantity describing the density distrib
tion N(kW8,rW,t) in the quasiparticle phase space, we can
tablish the corresponding Liouville’s theorem that states
total time invariance:

d

dt
N~kW8!5S ]

]t
1vW 8•

]

]rW
1FW 8•

]

]kW8
D N~kW8!50, ~5!

where, for simplicity, we useN(kW8)5N(kW8,rW,t). Here, vW 8

5]v8/]kW8 is the quasiparticle velocity~or equivalently, the
group velocity of the turbulence wave packets! and FW 8

5dkW8/dt is the force acting on these quasiparticles due
large scale perturbations of the medium. This force term
cludes refraction effects~which maintain the value ofv8), as
well as quasiparticle acceleration~implying the variation of
the energy, or frequencyv8). Quasiparticle kinetic equation
similar to Eq.~5! have been widely used in the past, but t
importance of the force term has only recently been rec
nized. It will be shown in this paper that this term plays
essential role in plasma turbulence.

We now considerN(kW8)5N0(kW8)1Ñ(kW8), and linearize
the kinetic wave equation around the unperturbed s
N0(kW8), by assuming a slow perturbation with the frequen
v and the wave vectorkW . The result is

Ñ~kW8!52 i
FW 8•]N0 /]kW8

~v2kW•vW 8!
. ~6!

Noting that we can write the equivalent force as

FW 852
]v8

]rW
52 ikW f 8~kW8!f, ~7!

one can relate the density perturbationÑ(kW8) with f. Thus,
returning to Eq.~3!, we obtain

e~v,kW !52E f ~kW ,kW8!
kW•]N0 /]kW8

~v2kW•vW 8!
dkW8, ~8!

where we have usedf (kW ,kW8)5 f 8(kW8)g(kW ,kW8). Comparing
this equation with Eq.~1!, we see that the integral in th
right-hand side is nothing but the quasiparticle susceptibi
xqp.

IV. RESONANT CONTRIBUTIONS

In order to identify the resonant and nonresonant con
butions toxqp, we consider the parallel and perpendicu
motions of the turbulence quasiparticles with respect to
direction of the propagation of the slow wave:

vW 85u
kW

k
1vW'8 , kW85p

kW

k
1kW'8 . ~9!
6-2
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Note that the parallel velocity is a function of the parallel a
the perpendicular momenta:u5u(p,kW'8 ). Equation ~8!
shows that resonant interactions of the wave with the qu
particles can occur when the parallel velocity equals
phase velocity of the slow wave. Then, we can write

xqp5E f ~kW ,kW'8 ,p!
]N0 /]p

~v/k2u!
dkW'8 dp. ~10!

The function f (kW ,kW'8 ,p) and the equilibrium distribution
N0 are, in general, continuous and single valued functio
and this integral only has one pole atp5p0 , determined by
the resonance conditionv/k5u. Developingu around its
resonance valueu05u(p0 ,kW8)5v/k, and introducing a par-
allel functionG(p), defined by

G~p!5E f ~kW ,kW'8 ,p!

~]u/]p!0
N0~kW'8 ,p!dkW'8 , ~11!

we can finally write the quasiparticle susceptibility in th
form xqp5x r1 ix im , where the real and imaginary parts a
determined by

x r52PE ]G~p!/dp

~p2p0!
dp, x im52pS ]G

]p D
0

, ~12!

and P* represents the principal part of the integral. Th
shows that the resonant and nonresonant contributions to
quasiparticle susceptibility have distinctive properties. T
nonresonant real part leads to a small correction of the lin
dispersion relation. However, the resonant imaginary p
can lead to the wave damping or growth, according to
sign of the derivative of the parallel functionG(p) at p
5p0 . This qualitatively important effect can thus be iden
fied with quasiparticle Landau damping.

V. QUASIPARTICLE BEAMS

Let us first consider the simple and physically releva
case of a Gaussian beam of quasiparticles, described by

G~p!5G0 expS 2
~p2 p̄!2

2s2 D , ~13!

whereG0 represents the beam intensity ands is the spectral
width. Note that this will also correspond to a nearly Gau
ian parallel distribution for the number densityN0(kW'8 ,p), if

f (kW ,kW'8 ,p) and (]u/]p)0 are slowly functions ofp around
p5 p̄. The maximum value for the resonant part of quasip
ticle susceptibility corresponds top5 p̄6s, and it is equal to

xmax5x Im~ p̄6s!57
p

es
G0 . ~14!

We see that it decreases with an increasing spectral w
and it is proportional to the intensity of the beam:uxmaxu
}G0. This means that the resulting kinetic instabilities w
typically have a growth rate proportional toG0 .
01640
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Another important case corresponds to the monoenerg
particle beam with a negligible spectral width,s;0, such
that ~for one-dimensional problems! it can be represented b

N~kW8!5N0d~kW'8 !d~p2 p̄!. ~15!

In order to study this case, we can writexqp in the form

xqp5 f ~k,0,p̄!E ]N/]p

~v/k2u!
dp

52 f ~k,0,p̄!E N0d~p2 p̄!

~v/k2u!2 dp, ~16!

and finally obtain

xqp52
f ~k,0,p̄!k2N0

~v2ku0!2 52
Vqp

2

~v2ku0!2 . ~17!

We see that this takes the familiar form of the susceptibi
of electron or ion beams with velocityu0 and densityN0 .
The frequencyVqp plays the role of a quasiparticle plasm
frequency, proportional to the square root of the beam d
sity. Here, again, the contribution of this term to the to
wave dispersion relation will become relevant for nea
resonant conditions, such thatv.ku0 . Then, we can use
v5ku01h, with uhu!ku0 . The dispersion relation~8! will
take the form

e~h,k!5
f ~k,0,p̄!k2N0

h2 . ~18!

For solutions such that Im(h).0, we will have a hydro-
dynamic type of beam instability, with growth rates that va
with the beam density, typically betweenN0

1/2 and N0
3/2.

Thus, these appear much stronger than the kinetic beam
stabilities associated with the inverse process of Lan
damping@1,3,6,9,13#.

VI. QUASIPARTICLE TRAPPING

We can also push forward the quasiparticle concept
consider the motion of individual quasiparticles, as describ
by the characteristics of the kinetic wave equation~5!:

drW

dt
5vW ,

dkW8

dt
5FW 852 f 8~kW8!¹W f~rW,t !, ~19!

whererW is the position of the quasiparticles~average position
of individual short wavelength wave packets!. Obviously,
this forceFW 8, is modulated due to the existence of the mon
chromatic slow wave. If we assume the propagation of t
slow wave along the directionOx, as defined byf(rW,t)
5f0 cos(kx2vt), we can describe the parallel motion of th
quasiparticles by

dx

dt
5S u2

v

k D ,
dp

dt
52k f8~p!f0 sin~kx2vt !. ~20!
6-3
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The perpendicular motion is trivially determined bykW'8
5constant. These equations show the existence of an ell
fixed point at

u~p!5
v

k
, x5

p

k
. ~21!

This means that, for quasiparticles such thatu(p).v/k, we
will have trapped oscillations at the bottom of the slow wa
potential, with small amplitudesx̃5x2p/k around the fixed
point. From Eqs.~21!, we can then derive

d2x̃

dt2
52k2f 8~p!

]u

]p
f0x̃, ~22!

which is the equation for the harmonic oscillator with a fr
quency

vb5kAf 8~p!~]u/]p!f0, ~23!

which is basically the bounce frequency for deeply trapp
oscillations of quasiparticles in the slow wave potentialf.
The similarities with the electron bounce frequency are st
ing. Kinetic effects leading to the appearance of the Kr
mode in a quasiparticle gas is then conceivable.

VII. QUASIPARTICLE DIFFUSION

The above kinetic approach can be extended to a qu
linear theory@1,3# if, instead of considering a single mono
chromatic slow wave, with the frequencyv and the wave
vectorkW , we consider a larger spectrum of slow waves int
acting with the high-frequency turbulence. In this case,
can make a time average over a time scale much longer
the typical period 1/v, and obtain an equation for near
unperturbed quasiparticle number density

]N0

]t
52E FW k8* •

]

]kW8
Ñk~kW8!dkW , ~24!

whereFW k8* is the complex conjugate of the force acting

the quasiparticles with momentumkW8, and due to the slow
component (v,kW ), andÑk(kW8) is the perturbed number den
sity varying as exp(ikW•rW2ivt). The integral is obviously
taken over the slow wave spectrum. Using Eqs.~6! and ~7!,
we can write

FW k8* 5 ikW f 8* ~kW8!fk* , ~25!

and

]

]kW8
Ñk~kW8!52

]

]kW8
f 8~kW8!fk

kW •]N0 /]kW8

~v2kW•vW 8!
. ~26!

Assuming thatf 8(kW8) is a very slow function ofkW8, then
we can write Eq.~24! in the form of a diffusion equation
01640
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]t
N0~kW8!5

]

]kW8
•D~kW ,kW8!•

]

]kW8
N0~kW8!, ~27!

where the diffusion tensor in the quasiparticle moment
space is determined by

D~kW ,kW8!. i u f 8~kW8!u2E kWkW
ufku2

~v2kW•vW 8!
dkW . ~28!

Such a diffusion is a statistical consequence of the accel
tion and deceleration of the individual quasiparticles~or
high-frequency wave packets!, resonantly interacting with
the different components (v,kW ) of the slow wave spectrum

VIII. SPECIFIC EXAMPLES

We illustrate the above general formalism by consider
two specific examples. The first one corresponds to the
acoustic waves moving in a plasmon gas. More specifica
we assume an isotropic plasma with a broadband elec
plasma wave turbulence@3#. In this case, we have the usu
dielectric function

e~v,kW !512
k2vs

2

v2~11k2lD
2 !

, ~29!

wherevs is the ion acoustic velocity andlD is the electron
Debye length. The plasmon gas can be characterized by
following expressions for the velocity and force

vW 53v the
2 kW 8

v8
, FW 852

1

2v8

e2

e0me

]ñe

]rW
. ~30!

Here, ñe is the perturbed electron plasma number dens
which, for the ion acoustic waves, can be related with
potential perturbation byñe5e0f/(elD

2 ). This leads to a
force given by Eq.~7! with

f 8~kW8!5
1

2v8

e

melD
2 , ~31!

wherev8.vpe. On the other hand, the calculation ofxqp
leads to

f ~kW ,kW8!5
k2vpe

2

v2n0mi~11k2lD
2 !2v82 . ~32!

This completely characterizes the problem. For example,
bounce frequencyvb of a trapped plasmon in the potenti
well of the ion acoustic waves will be given by

vb.k
vpe

v8 S ef0

2me
D 1/2

. ~33!

Comparing this with the electron bounce frequencyvbe
5(ef0 /me)

1/2, we conclude that the plasmon behaves a
particle with the electron charge and an effective mass eq
to (2me /k2), where we have assumedv85vpe.
6-4
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Our second example will be that of a zonal flow in
drifton gas~or a broadband drift wave turbulence!. In this
case, we have a pseudo-three-dimensional model in the
(r ,u) perpendicular to the toroidal magnetic fieldB0 , which
can be described by a modified Hasegawa-Mima equa
@6,7#. In this case, we havee(v,kW')51, which means tha
there is no linear dispersion relation for the zonal flow
However, the quasiparticle susceptibilityxqp associated with
the drifton gas allows for the existence of a nonlinear disp
sion relation determined by the function

f ~kW ,kW'8 !52
k2vs

2

v

ku8
2rs

2kr8

~11k82rs
2!

, ~34!

wherers5(vs /vci) is the ion acoustic Larmor radius. Th
electron drift wave packets, or driftons in our quasiparti
description, can be characterized by the dispersion relat

v85ku8S V01
V*

11k'8
2rs

2D , ~35!

where V05ckf0 /B0 and V* is the electron diamagneti
drift velocity. This means that the force acting on the drifto
is

FW 852
]v8

]rW'

52 f 8~kW'8 !
]

]rW'

f, ~36!

wheref(rW' ,t) is the slow potential perturbation associat
with the zonal flow and

f 8~kW'!5
ck

B0
ku8 . ~37!

Here, again, the functionsf (kW ,kW'8 ) and f 8(kW') will com-
pletely characterize our problem and allow us to study
various kinetic and hydrodynamic beam instabilities, as w
as to establish the values of the bounce frequency and
quasiparticle diffusion.

IX. CONCLUSIONS

The definition of a quasiparticle susceptibility, and t
existence of resonant interactions between quasiparticles
slow waves, leads to a general view of the plasma and fl
turbulence where long wavelength perturbations can be L
dau damped by the turbulent medium. Examples of this t
of general behavior are the cases of the photon Lan
damping of relativistic electron plasma waves, the plasm
Landau damping of the ion acoustic waves, the phonon L
dau damping of dust lattice waves in dusty plasmas o
ordinary liquids, or the drifton Landau damping of zon
v.

a
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flows in magnetic fusion plasmas. The existence of this w
variety of examples results from the universality of the re
nant coupling between large scale and small scale struct
in fluids and plasmas, and it can be seen as different m
festations of anomalous viscosity associated with the tur
lent state.

On the other hand, for appropriate turbulent spectra~or
quasiparticle distributions!, resonant damping can be re
placed by resonant amplification, and consequently lead
instabilities. This could be described as an anomalous ne
tive viscosity. The excitation of large scale structures
small scale turbulence in fluids has been sometimes
scribed as in terms of a negative viscosity. But here we pre
to relate it to the existence of quasiparticle distributions. T
concept of quasiparticle is indeed one of the basic conc
of the field theory and its importance to plasma physics
stressed here. The resonant interactions between these
ticles and wave perturbations are efficient channels for
energy exchange between small and large scale events
fluid without the need for energy cascading. Their equatio
of motion describe the energy exchange of these quasip
cles with the medium, and show that quasiparticle accele
tion and trapping by waves and by moving large scale p
turbations of the medium can eventually take place. Pho
acceleration by electron plasma waves and by relativi
ionization fronts@14# are nothing but a particular and som
what spectacular example of this much larger concept.

Furthermore, beams of nearly monoenergetic quasipa
cles, with distributions of the typeN(kW8)5N0d(kW82kW08),
can excite waves as these move through the medium, in
same way as electron beams or laser pulses~photon beams!
can excite electron plasma waves. This can be seen as
siparticle beam instabilities, and several examples have b
studied@1,3,6#. Finally, mention should be made to the de
vation of quasilinear equations describing diffusion in qua
particle phase space, which can answer the question of
global energy transfer between the large and the small sc
of plasma perturbations, for given initial conditions. Partic
lar examples are the expressions for the photon diffus
coefficient when interacting with an electron plasma wa
spectrum@1#, or the plasmon diffusion coefficient in the pla
mon wave number space, expressed in terms of the pho
distribution@3#. Similar expressions could be derived for di
ferent kinds of drift wave turbulence interacting with a spe
trum of shear flows or zonal flows, as shown by the abo
general formalism.
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