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Resonant quasiparticles in plasma turbulence
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A general view is proposed on wave propagation in fluids and plasmas where the resonant interaction of
monochromatic waves with quasiparticles is considered. A kinetic equation for quasiparticles is used to de-
scribe the broadband turbulence interacting with monochromatic waves. Resonant interactions occur when the
phase velocity of the long wavelength monochromatic wave is nearly equal to the group velocity of short
wavelength wave packets, or quasiparticles, associated with the turbulent spectrum. It is shown that quasipar-
ticle Landau damping can take place, as well as quasiparticle beam instabilities, thus establishing a direct link
between short and large wavelength perturbations of the medium. This link is distinct from the usual picture of
direct and inverse energy cascades, and it can be used as a different paradigm for the fluid and plasma
turbulence theories.
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[. INTRODUCTION these waves can become parametrically unstable due to the
turbulent fluctuations of the plasma sheath where dust

Plasmas and fluids are usually in a turbulent state. One gilasma crystals are formed, and can eventually lead to melt-
the main physical problems is then to understand how monohg and sublimation of the crystalline structure. The back-
chromatic waves or large scale structures can develogjround quasiparticles here are plasma phonons.
propagate, or be damped by the turbulence. Here, we pro- (Iv) Zonal flows in which one could call a drifton gas
pose a global approach where the broadband turbulence [8—7 (which describes a large spectrum of drift wave turbu-
described as a gas of quasiparticles. Such an approach '&c; this is a relevant process for anomalous transport in
valid as long as we can identify two space and time scalénagnetic fusion plasmas. Similar processes can also be
ranges; a short one associated with the internal oscillations §fund in fluid dynamics, involving zonal flows and Rossby
these quasiparticles and a long one associated with the indftaves in the oceans or in the atmosphere of the plgBéts
vidual monochromatic waves or large scale structures. ~ But the universality of the physical picture described here

In such a picture of plasma and fluid turbulence, the mair{S Not exhausted by these examples, and a much larger num-
physical processes are those leading to a direct coupling b&€r Of relevant examples can be added. As an extreme ex-
tween large scale structurébe wave and short scale struc- @mple, we could consider the excitation of gravitational
tures of the mediungthe turbulenck This coupling can lead Waves by a photon g48], where the fluid is replaced by the
to an energy exchange in opposite directions. The energy@cuum metric field and the photons can be considered as
transfer from turbulence to large scale structures can be ddgasiparticles in the sense of short scale electromagnetic
to kinetic and hydrodynamic instabilities of the quasiparticleWave packets.
gas. This has been improperly described as an inverse cas-
cading process, but it consists on a single step process and [l. DISPERSION RELATION
not really a cascade.

The opposite case of an energy transfer to the short scale
turbulence is due to wave damping, associated with the resd
nant interaction between a long wavelength wave and the -
quasiparticles. It extends the concept of a noncollisional Lan- €(@,K) ==X, @

dau damping from the real particléslectrons and ions, in . . . U
the origingl gonceptto the qupasiparticle distributions. where x, is the quasiparticle susceptibility, if the turbulent

The universality of the resonant processes should bétate is described as a quasiparticle gas, énelk) is the
stressed here. Several particular examples can already 9@'90”10 function for a mode with frequeﬁnay and wave
found in the literature, and illustrate such universality: vector k. Usually, we can also writes(w,K)=1+2 ,x,,

(i) Electron plasma waves propagating in a photon gasvhere the sum is over the different charged particle species
[1]; this is relevant to laser-plasma interactions and to astropresent in the plasma. It is important to note thgfcontains
physics. both resonant and nonresonant quasiparticle contributions,

(i) lon acoustic waves in a plasmon gas, where the plasand that the resonant part plays an important role in the en-
mons describe the broadband electron plasma wave turbergy balance of the plasma, as discussed below.
lence[2,3]; this process can be seen as of an academic inter- This kind of dispersion relation can be established by
est, which, however, provides a useful basis for differentstarting with an equation of the propagation for the potential
experimental plasma studies. ¢ (or, in alternative, for the density perturbati@n of the

(iii) Dust lattice waves in a turbulent plasma sheath  form

The general form of the dispersion relation of electrostatic
aves in a turbulent plasma can be written as
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L(7,t,N(K")) =0, ) tion for the electrostatic or the electromagnetic fi[;ld,lﬂ. _
Once identified the quantity describing the density distribu-

wherelL is a space-time differential operator, which dependsion N(IZ’,F,t) in the quasiparticle phase space, we can es-
on the quasiparticle number densiy(k’), andk’ is the tablish the corresponding Liouville’s theorem that states its
quasiparticle momentum. Note that this is a nonlinear dispertotal time invariance:

sion relation, WhereN(IZ’) is also related to the potentidl.

By imposing a perturbation of the fgrm eil-F—ot) on EN(Q): ﬁﬂ;/. i+ﬁ'. % N(k’)=0, (5
both ¢ and the perturbed distributidd(k’), we obtain dt ot or kK’
(o R)‘ﬁ:j g(RKONI(R)dR'. (3)  Where, for simplicity, we usN(k’)=N(k’,F,t). Here, v’
=Jdw'l3k' is the quasiparticle velocitjor equivalently, the

Obviously, e(w,IZ)=0 will be the dispersion relation of the group velocity of the turbulence wave packewnd F'

slow wave, in the absence of turbulence. But, in general, we=dk'/dt is the force acting on these quasiparticles due to
need to establish a relation betwetk') with ¢, in order large scale perturbations of the medium. This force term in-
to derive the dispersion relatigft). This is done by using an cludes refraction effectsvhich maintain the value ab’), as
evolution equation for the turbulence field in the form of a "Well as quasiparticle acceleratiémplying the variation of

kinetic wave equation for the quasiparticle distribution. € €nergy, or frequenay’). Quasiparticle kinetic equations
similar to Eq.(5) have been widely used in the past, but the

importance of the force term has only recently been recog-

nized. It will be shown in this paper that this term plays an
Before stating the kinetic wave equation, we need to idenessential role in plasma turbulence.

tify an invariant quantityN, valid for a slowly perturbed We now consideiN(k’)=Ny(k’)+N(k’), and linearize

turbulent state, in the form of an integral over the sixth-the kinetic wave equation around the unperturbed state

dimensional(position and momentujrphase spacef’(k’): No(k’), by assuming a slow perturbation with the frequency

o and the wave vectdk. The result is

IIl. KINETIC EQUATION

N:JN&zﬁUWdQ. (4)

In most situations, the quantity appearing inside the integral ©®)
is nothing but the energy density divided by the frequency,
and takes the obvious physical meaning of a quasiparticle
number density or wave actidd(k’,7,t) =W(K',F,t)/fiw’,
where we can také =1, and wheraw' is the energy of the . Jw' .

quasiparticles with momentuf. We can thus identify this o —ikf'(k") ¢, @)
frequency with the functiono’zw’(l?’), as determined by

the linear dispersion relation of the short wavelength turbupne can relate the density perturbatiitk’) with ¢. Thus,
lence modes. This is valid for the electromagnetic turbulenc@eturning to Eq.(3), we obtain

(where the photons in a plasma can be seen as an extreme

example of quasiparticles and more appropriately described KON~ ok’

as dressed particles in the usual sense of the field theasy f(w'g): _f f(IZ,IZ’) .—Odl?, ®
well as for the electrostatic turbulence of the electron plasma (w—K-3")

or the ion acoustic typegplasmons and phononsThis is

also valid in the case of the pseudo-three-dimensional driff \ . \ve have usedi(k,k')=f'(K")g(k,k'). Comparing

wave turbulence, which can be called a drifton gas, as de[his equation with Eq(1), we see that the integral in the

scribed by a modified Hasegawa-Mima equafi6rv]. - S : L o
it should be noticed that, in the present approach, thenght hand side is nothing but the quasiparticle susceptibility

quasiparticle number density(k’,f,t) is not a function of
the frequency(or energy ', and only of the wave vector
(or momentum k’. Of course, we could have used a fre-
quency dependent distributidi(k’,»':7,t), as it can also In order to identify the resonant and nonresonant contri-
be found in the literaturg11]. If the frequency is uniquely bPutions toxq,, we consider the parallel and perpendicular
Write N(IZ’ P t)=27rN(IZ’ 0T 1) 5(w,_w,(|2,)) direction of the propagation of the slow wave:

A consistent definition of the quasiparticle number den-
sity, where the relation between these two possible defini- =
tions is clarified, can be given in terms of the Wigner func-

—
S
|
~1
<y
-

Noting that we can write the equivalent force as

Xap-

IV. RESONANT CONTRIBUTIONS

+0l, k'=p-+Kk.. (9)

1 =

016406-2



RESONANT QUASIPARTICLES IN PLASMA TURBULENCE PHYSICAL REVIEW 68, 016406 (2003

Note that the parallel velocity is a function of the parallel and Another important case corresponds to the monoenergetic
the perpendicular momentarJ:u(p,IZi). Equation (8)  particle beam with a negligible spectral widti~0, such
shows that resonant interactions of the wave with the quasthat(for one-dimensional problems can be represented by
particles can occur when the parallel velocity equals the

phase velocity of the slow wave. Then, we can write N(K")=Nos(K])8(p—p). (15
> dNglap In order to study this case, we can wrjg, in the form
qu=f f(k,k ,p)(w/k—_u)dkidp. (10)

dN/dp
. =f(k,0p) | ———d
The functionf(k,k] ,p) and the equilibrium distribution Xap= T EJ' (w/k—u) P

Ny are, in general, continuous and single valued functions,

and this integral only has one pole @t p,, determined by = _f(klomj mdp, (16)
the resonance conditiom/k=u. Developingu around its (w/k—u)
resonance valuaozu(po,IZ’)zw/k, and introducing a par- ' .
allel functionG(p), defined by and finally obtain
. f(k,0p)k2N 0%
(kK o e — OPKMN D
G(p): NO(kJ_ !p)dk ’ (11) ap (C!)_kUO) ((x)_kuo)

(aulap)g

We see that this takes the familiar form of the susceptibility
of electron or ion beams with velocity, and densityN,.
The frequency()y, plays the role of a quasiparticle plasma
frequency, proportional to the square root of the beam den-
G sity. Here, again, the contribution of this term to the total
dp, Xim:_w(ﬁ_) , (120  wave dispersion relation will become relevant for nearly
Plo resonant conditions, such that=kug. Then, we can use

_ . . w=Kkug+ 7, with | | <kuy. The dispersion relatiot8) will
and P [ represents the principal part of the integral. Th'stake the form

shows that the resonant and nonresonant contributions to the

we can finally write the quasiparticle susceptibility in the
form xqp= x: +ixim, Where the real and imaginary parts are
determined by

B _PJ dG(p)/dp
A (P—Po)

quasiparticle susceptibility have distinctive properties. The f(k,0P)k2N
nonresonant real part leads to a small correction of the linear e(n,k)= _2_0 (18)
dispersion relation. However, the resonant imaginary part Y

can lead to the wave damping or growth, according to the
sign of the derivative of the parallel functioB(p) at p
=po. This qualitatively important effect can thus be identi-
fied with quasiparticle Landau damping.

For solutions such that Ing>0, we will have a hydro-
dynamic type of beam instability, with growth rates that vary
with the beam density, typically betwees3? and N3,
Thus, these appear much stronger than the kinetic beam in-
stabilities associated with the inverse process of Landau
damping[1,3,6,9,13.

Let us first consider the simple and physically relevant

V. QUASIPARTICLE BEAMS

case of a Gaussian beam of quasiparticles, described by VI. QUASIPARTICLE TRAPPING
(p—p)> We can also push forward the quasiparticle concept and
G(P)=Goexp ——5 7|, (13 consider the motion of individual quasiparticles, as described

by the characteristics of the kinetic wave equatibn

whereG, represents the beam intensity ands the spectral R
idth. N hat this will al I - ar dk’ . - =

Wldt ote t_ at_t |§ will also correspond to a n§:51ry G_auss s R )T, (19

ian parallel distribution for the number density(k; ,p), if dt dt

f(k,k, ,p) and (9u/dp), are slowly functions ofp around

p=p. The maximum value for the resonant part of quasipar

ticle susceptibility corresponds pp=p= o, and it is equal to

wherer is the position of the quasiparticlésverage position
of individual short wavelength wave packetbviously,

this forceF’, is modulated due to the existence of the mono-
_ T chromatic slow wave. If we assume the propagation of this
Xmax= Xim(P~ 0) =+~ Go. (149 slow wave along the directio®x, as defined bye(r,t)
= ¢ coskx—wt), we can describe the parallel motion of the
We see that it decreases with an increasing spectral widtt§uasiparticles by
and it is proportional to the intensity of the beah¥a g g
xGgy. This means that the resulting kinetic instabilities will X_ w p_ , .
typically have a growth rate proportional @ . dt ( U= F) o ar - K (p)gosinkx=ot). (20
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The perpendicular motion is trivially determined Ey d . d .. d R
= constant. These equations show the existence of an elliptic ENO(k’): —D(k,k") - —No(k"), (27)
fixed point at ok ok

o - where the diffusion tensor in the quasiparticle momentum
u(p)=1 X=1- (21)  space is determined by
2

This means that, for quasiparticles such thgh) = w/k, we D(IZ,IZ’)zi|f'(IZ’)|2f EE&dR, (28)
will have trapped oscillations at the bottom of the slow wave (w—k-0")

potential, with small amplitudég=x— «/k around the fixed S o
point. From Egs(21), we can then derive Such a diffusion is a statistical consequence of the accelera-

tion and deceleration of the individual quasiparticles

d?x ey, OU high-frequency wave packeisresonantly interacting with
qe ="Kt %%x, (220 the different componentsu( k) of the slow wave spectrum.
which is the equation for the harmonic oscillator with a fre- VIIl. SPECIFIC EXAMPLES

uenc . . -
q 4 We illustrate the above general formalism by considering

w,=k\F(p)(aulap) do, (23) two sp_eC|f|c example_:s. The first one corresponds to '_the ion
acoustic waves moving in a plasmon gas. More specifically,

which is basically the bounce frequency for deeply trappedVe @Ssume an isotropic plasm_a with a broadband electron
oscillations of quasiparticles in the slow wave potengal Plasma wave turbulend@]. In this case, we have the usual
The similarities with the electron bounce frequency are strik-di€lectric function
ing. Kinetic effects leading to the appearance of the Kruer K202
mode in a quasiparticle gas is then conceivable. K=1— —— 5 29
6((1), ) w2(1+k2)\%) ) ( )

Vil. QUASIPARTICLE DIFFUSION whereuv, is the ion acoustic velocity and is the electron

The above kinetic approach can be extended to a quasiPebye length. The plasmon gas can be characterized by the
linear theory[1,3] if, instead of considering a single mono- following expressions for the velocity and force
chromatic slow wave, with the frequenay and the wave

vectork, we consider a larger spectrum of slow waves inter-
acting with the high-frequency turbulence. In this case, we
can make a time average over a time scale much longer than )
the typical period kb, and obtain an equation for nearly Here, e is the perturbed electron plasma number density

PO 1 e M,
2w’ egmg or

(30

unperturbed quasiparticle number density which, for the ion acoustic waves, can be related with the
potential perturbation byi.= eoqb/(e)\%). This leads to a
N, R 9 . . force given by Eq(7) with
—z—f Fi© - —Ng(k")dk, (24
ot ok’ N T
F(K)= 507 oz (30

where Ifl’(* is the complex conjugate of the force acting on
the quasiparticles with momentuki, and due to the slow
component ¢,k), andN,(k') is the perturbed number den-
sity varying as expEF—iwt). The integral is obviously R kase
ﬁgir;r?\cs;tie slow wave spectrum. Using E@.and (7), (k,k")= wznomi(1+k2)\2D)2w’2'

where o’ =wy.. On the other hand, the calculation gf;,
leads to

(32)

This completely characterizes the problem. For example, the

F* =ikt *(K") oy , (25  bounce frequency,, of a trapped plasmon in the potential
g well of the ion acoustic waves will be given by
an
® e¢0 1/2

. . zk—pe< ) . 33
I~ g . k-aNgldk’ o | 2mg (33
—Ne(k)==—F"(K)p—"—. (26
ak ak (w—k-v") Comparing this with the electron bounce frequeney,

R R =(edy/my)Y? we conclude that the plasmon behaves as a
Assuming thaff’ (k") is a very slow function ok’, then  particle with the electron charge and an effective mass equal
we can write Eq(24) in the form of a diffusion equation to (2m./k?), where we have assumedl = wpe.
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Our second example will be that of a zonal flow in aflows in magnetic fusion plasmas. The existence of this wide
drifton gas(or a broadband drift wave turbulerncdn this  variety of examples results from the universality of the reso-
case, we have a pseudo-three-dimensional model in the plarant coupling between large scale and small scale structures
(r, 6) perpendicular to the toroidal magnetic fi8g, which  in fluids and plasmas, and it can be seen as different mani-
can be described by a modified Hasegawa-Mima equatiofestations of anomalous viscosity associated with the turbu-
[6,7]. In this case, we have(w,k,)=1, which means that lent state.
there is no linear dispersion relation for the zonal flows. On the other hand, for appropriate turbulent spectra
However, the quasiparticle susceptibiliy, associated with ~quasiparticle distributions resonant damping can be re-
the drifton gas allows for the existence of a nonlinear disperPlaced by resonant amplification, and consequently lead to

sion relation determined by the function instabilities. This could be described as an anomalous nega-
tive viscosity. The excitation of large scale structures by
. P e small scale turbulence in fluids has been sometimes de-
f(k,ki)=— o (11k'%D)’ (34 scribed as in terms of a negative viscosity. But here we prefer
S

to relate it to the existence of quasiparticle distributions. The

where ps=(vs/wg;) is the ion acoustic Larmor radius. The concept of quasiparticle_ is _indeed one of the basic concepts
electron drift wave packets, or driftons in our quasiparticleof the field theory and its importance to plasma physics is

description, can be characterized by the dispersion relationstressed here. The resonant interactions between these par-
ticles and wave perturbations are efficient channels for the

% energy exchange between small and large scale events in a
m ' (39 fluid without the need for energy cascading. Their equations
of motion describe the energy exchange of these quasiparti-
where Vo=ck¢y /By and V, is the electron diamagnetic cles with the medium, and show that quasiparticle accelera-
drift velocity. This means that the force acting on the driftonstion and trapping by waves and by moving large scale per-

w’=k/9 V0+

is turbations of the medium can eventually take place. Photon
acceleration by electron plasma waves and by relativistic
=, Jo' L= d ionization fronts[14] are nothing but a particular and some-
Fre— == (k) = ¢, (36) -
ar, or, what spectacular example of this much larger concept.

_ _ _ _ Furthermore, beams of nearly monoenergetic quasiparti-
where ¢(r, ,t) is the slow potential perturbation assomateddes, with distributions of the type\I(IZ’)zNOé(IZ’—IZ{)),

with the zonal flow and can excite waves as these move through the medium, in the
) ck same way as electron beams or laser pulpeston beams

f'(k, )= B_k‘lg' (37)  can excite electron plasma waves. This can be seen as qua-

0 siparticle beam instabilities, and several examples have been

) . > Lo _ studied[1,3,6]. Finally, mention should be made to the deri-
Here, again, the functions(k,k,) and f'(k,) will com- 400 of quasilinear equations describing diffusion in quasi-
pletely characterize our problem and allow us to study the,4icle phase space, which can answer the question of the
various kinetic and hydrodynamic beam instabilities, as We'G\GIobal energy transfer between the large and the small scales
as to establish the values of the bounce frequency and thg plasma perturbations, for given initial conditions. Particu-

quasiparticle diffusion. lar examples are the expressions for the photon diffusion
coefficient when interacting with an electron plasma wave
IX. CONCLUSIONS spectruni1], or the plasmon diffusion coefficient in the plas-

mon wave number space, expressed in terms of the phonon

existence of resonant interactions between quasiparticles al tr|bu'§|on[3]. S|m|lar expressions cpuld be .denvgd for dif-
rent kinds of drift wave turbulence interacting with a spec-

slow waves, leads to a general view of the plasma and flui m of sh flows or zonal flo as sh by the abo
turbulence where long wavelength perturbations can be Lal fu shear Tlows or z WS, as shown by the above

dau damped by the turbulent medium. Examples of this typgeneral formalism.
of general behavior are the cases of the photon Landau
damping of relativistic electron plasma waves, the plasmon
Landau damping of the ion acoustic waves, the phonon Lan- This research was partially supported by the European
dau damping of dust lattice waves in dusty plasmas or irCommission(Brussel$ through Contract Nos. HPRN-CT-
ordinary liquids, or the drifton Landau damping of zonal 2000-00140 and HPRN-CT-2001-00314.

The definition of a quasiparticle susceptibility, and the
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